NASA=CR-20061 1

College of Engineering

Department of Mechanical,
Industrial, and
Manufacturing Engineering

Grant Report
on

Development of a Prototype Simulation
Executive with Zooming in the Numerical
Propulsion System Simulation

NASA Contract NCC3-207
prepared by

John A. Reed, Research Associate
Dr. Abdollah A. Afjeh, Associate Professor

Mechanical Engineering Department
University of Toledo
Toledo, Ohio 43606

July 1995

Table of Contents

1.0 Introduction 1

1.1 NPSS Prototype Simulation Environment: TESS 1
1.2 Zooming 1

1.3 Report Outline 1

2.0 Appilication Visualization System (AVS) 3

2.1 Modules 4
2.1.1 Data Inputs 5
2.1.2 Input Parameters 5
2.1.3 Data Outputs 5

2.2 Flow Networks 5
2.2.1 Network editor 5

- 2.2.2 Flow Execution 7

2.2.3 Data Flow 7

2.3 TESS Data Passing Structure 8

3.0 Engine Component Mathematical Models 10
3.1 Gas Properties 10
3.2 Bleed 10
3.3 Combustor 10
3.4 Compressor 11
3.5 Duct 12
3.6 Flight Conditions and Inlet (Environment) 12
- 3.7 Intercomponent Volume (Mixing Volume) 13
3.8 Nozzle 14
3.8.1 Subsonic Flow 15
3.8.2 Sonic Flow 15
3.8.3 Supersonic Flow 15
3.9 Shaft 16
3.10Turbine 16

4.0 TESS Operating Paradigm 18
4.1 Applying the Governing Equations 18
4.1.1 The Components Execution Sequence 18
4.1.2 “Running the Engine” 19
4.2 Computing Correction Coefficients 20
4.3 Determining Steady-State Engine Balance 20
4.4 Transient Engine Analysis 21

5.0 Implementation of Operating Paradigm Within
- AVS Framework 22
5.1 System Execution Control 22
5.1.1 TESS Message Passing Under AVS 24
5.2 Operating Paradigm Implementation Under
AVS 24
5.2.1 Engine System Connectivity (NSYS
values 0, 1, and 9) 24
5.2.2 Initializing System with Design Point Data
(NSYS value 2) 27

5.2.3 Computing Correction Coefficients (NSYS
values 3 and 4) 27

5.2.4 Initializing System with Initial Operating
Point Data (NSYS values 10 and 8) 28

5.2.5 “Running The Engine” (NSYS values 7, 5
and 6) 28

5.2.6 Balancing Engine to Steady-state
Conditions At Initial Operating Point 28

5.2.7 Transient Analysis of Engine 30

5.3 Modules With Multiple Input Ports 30
5.3.1 Module Execution Control 30
5.3.2 Data Integration 31

6.0 Description of TESS Modules Execution 34
6.1 SYSTEM34
6.2 SYSTEM-END 37
6.3 Bleed 37
6.4 Combustor 38
6.5 Compressor 40
6.6 Duct42
6.7 Environment 43
6.8 Mixing Volume 44
6.9 Nozzle 46
6.10 Shaft 47
6.11 Turbine 49

7.0 Simulation Comparison 51
7.1 DIGTEM Fan Model Incompatibility with
TESS 51
7.2 TESS Test Engine Configurations 52
7.3 Results of the Test Engine Simulations 53

8.0 Zooming 58
8.1 Introduction 58
8.2 Zooming Framework 59
8.2.1 Turbofan Engine System Simulator
(TESS) 59
8.2.2 Advanced Ducted Propfan Analysis
Code (ADPAC) 60
8.2.3 Parallel Virtual Machine (PVM) 61
8.3 Prototype Zooming System 61
8.4 Results and Conclusions 63

9.0 LAPIN/TESS Zooming 64
9.1 LAPIN/TESS Framework 64
9.2 Integration Difficulties 64
9.3 Results 65

References 66

List of Figures

Figure 1.1 TESS Graphical Environment 2

Figure 2.1 AVS Data Visualization Environment 3

Figure 2.2 Typical AVS Flow Visualization Network 4

Figure 2.3 Module Interface: the module icon 4

Figure 2.4 AVS Control Widgets 5

Figure 2.5 AVS Network Editor 6

Figure 2.6 AVS Network Editor Windows 6

Figure 2.7 Top Level Stack Browser 7

Figure 2.8 Three Connected AVS Modules 9

Figure 2.9 Data Flow Between Kernel, Modules and
Memory Regions9

Figure 4.1 Passing the Values of Fuel-air Ratio and
Mass Flow Rate 19

Figure 4.2 Combined Computational Steps 3, 4, 5,
and 6 20

Figure 4.3 Graphical Representation of Transient
Control Schedule 21

Figure 5.1 Flow of Data in an AVS Visualization
Application 22

Figure 5.2 Representation of Turbine Propulsion System
Core Section 23

Figure 5.3 Connecting Lines Between Components 24

Figure 5.4 Example Propulsion System Network 25

Figure 5.5 TESS Module Types and Codes 26

Figure 5.6 Contents of comp.list.no File As Read By
AB_DUCT Component 26

Figure 5.7 Contents of comp.list.no File After
Completion 26

Figure 5.8 Contents of comp.list.up File After AB_DUCT
Component 27

Figure 5.9 Contents of Completed comp.list.dn File 27

Figure 5.10 Bleed-cooled Turbine Implementation 28

Figure 5.11 Extraction and Replacement of VDOT and
VS Values 29

Figure 5.12 Multiple Input Port Module 30

Figure 5.13 Module Network Connected in Linear
Fashion 31

Figure 5.14 Module Network Connected in Parallel
Fashion 31

Figure 6.1 SYSTEM Module Shown Connected In Typical
Fashion 34

Figure 6.2 SYSTEM Module Control Panel 34

Figure 6.3 Flowchart Describing SYSTEM module
Control Process 35

Figure 6.4 SYSTEM Module Steady-state Methods Pop-
up Windows 36

Figure 6.5 SYSTEM Module Transient Methods Pop-up
Windows 37

Figure 6.6 SYSTEM-END Module Shown Connected In
Typical Fashion 37

Figure 6.7 Bleed Module Shown Connected In Typical
Fashion 38

Figure 6.8 Bleed Module Control Panel 38

Figure 6.9 Combustor Module Shown Connected In
Typical Fashion 39

Figure 6.10 Combustor Module Control Panel 39

Figure 6.11 Compressor Module Shown Connected In
Typical Fashion 40

Figure 6.12 Compressor Module Control Panel 40

Figure 6.13 Duct Module Shown Connected In Typical
Fashion42

Figure 6.14 Duct Module Control Panel 42

Figure 6.15 Environment Module Shown Connected In
Typical Fashion 43

Figure 6.16 Environment Module Control Panel 44

Figure 6.17 Mixing Volume Module Shown Connected In
Typical Fashion 44

Figure 6.18 Mixing Volume Module Control Panel 45

Figure 6.19 Nozzle Module Shown Connected In Typical
Fashion46

Figure 6.20 Nozzle Module Control Panel 47

Figure 6.21 Shaft Module Shown Connected In Typical
Fashion 48

Figure 6.22 Shaft Module Control Panel 48

Figure 6.23 Turbine Module Shown Connected In Typical
Fashion 49

Figure 6.24 Turbine Module Control Panel 49

Figure 7.1 Schematic Representation of Test Engine 51

Figure 7.2 Analytical Model of Test Engine 51

Figure 7.3 DIGTEM Fan Model 51

Figure 7.4 Revised DIGTEM Fan Model 52

Figure 7.5 TESS “Smeared-Fan” Configuration 52

Figure 7.6 TESS “Split-Fan” Configuration 52

Figure 7.7 TESS Smeared-fan Test Engine 53

Figure 7.8 TESS Split-fan Test Engine 54

Figure 7.8 Combustor Fuel Mass Flow Rate Control
Schedule 55

Figure 7.10 Compressor Variable Geometry Control
Schedules 55

Figure 7.11(a) Nozzle Gross Thrust Transient Plot 55

Figure 7.11(b) Low-speed Spool Transient Plot 56

Figure 7.11(c) High-speed Spool Transient Plot 56

Figure 7.11(d) Combustor Stagnation Pressure Transient

Plot 56
Figure 7.11(e) HP Turbine Inlet Stagnation Temperature
Transient Plot 57

Figure 7.12 Comparson of Fan Mass Flow Rates 57

Table 5.1
Table 5.2
Table 5.3

Table 5.4

Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 7.1
Table 7.2

List of Tables

NSYS Values and Engine Operations 24
Representation of Data Struct 31
Representation of Data Struct 1 and
Struct 1A 32

Representation of Data Struct 2 and
Struct 2A 32

Representation of Data Struct 3 32
Representation of Data Struct 4 32
Representation of Data Struct 6 32
Representation of Data Struct 5 32
Representation of Data Struct 7 33
Newton-Raphson Control Parameters 54
Improved Euler Control Parameters 54

1.0 Introduction

A major difficulty in designing aeropropulsion systems
is that of identifying and understanding the interactions
between the separate engine components and
disciplines (e.g., fluid mechanics, structural mechanics,
heat transfer, material properties, etc.). The traditiona!
analysis approach is to decompose the system into
separate components with the interaction between
components being evaluated by the application of each
of the single disciplines in a sequential manner. Here,
one discipline uses information from the calculation of
another discipline to determine the effects of component
coupling. This approach, however, may not properly
identify the consequences of these effects during the
design phase, leaving the interactions to be discovered
and evaluated during engine testing. This contributes to
the time and cost of developing new propulsion systems
as, typically, several design-build-test cycles are needed
to fully identify multidisciplinary effects and reach the
desired system performance.

The alternative to sequential isolated component
analysis is to use multidisciplinary coupling at a more
fundamental level. This approach has been made more
plausible due to recent advancements in computation
simulation along with application of concurrent
engineering concepts. Computer simulation systems
designed to provide an environment which is capable of
integrating the various disciplines into a single simulation
system have been proposed and are currently being
developed. One such system is being developed by the
Numerical Propulsion System Simulation (NPSS)
project.

The NPSS project, being developed at the
Interdisciplinary Technology Office at the NASA Lewis
Research Center is a “numericai test cell” designed to
provide for comprehensive computational design and
analysis of aerospace propulsion systems. It will provide
multi-disciplinary analyses on a variety of computational
platforms, and a user-interface consisting of expert
systems, data base management and visualization tools,
to allow the designer to investigate the complex
interactions inherent in these systems [1, 2].

1.1 NPSS Prototype Simulation
Environment: TESS

A key component of computational multidisciplinary
analysis simulation systems is the simulation
environment, which integrates the physical sciences,
computer sciences, computer systems software and
computer system hardware into a unified system.

In the current work, a simulation environment for
propulsion systems is developed which provides means
for integrating the multitude of analysis codes, database,
expert systems, etc., into a single “seamless” system, as
well as presenting a user-friendly interface to the end
user. This environment permits choice of analysis
techniques and languages, ability to access and manage

data from various sources, and interpretation of results.
Additionally, it provides heterogeneous distributed
computing support allowing optimal use of computational
resources.

An interactive programming software system, known
as the Application Visualization System (AVS) [3], was
utilized for the development of the propulsion system
simulation. The modularity of this system provides the
ability to couple propulsion system components, as well
as disciplines, and provides for the ability to integrate
existing, well established analysis codes into the overall
system simulation. This feature allows the user to
customize the simulation model by inserting desired
analysis codes. The prototypical simulation environment
for multidisciplinary analysis, called Turbofan Engine
System Simulation (TESS), which incorporates many of
the characteristics of the simulation environment
proposed herein, is detailed (see Figure 1.1) [4].

1.2 Zooming

One unique aspect of computational analysis, which is
to be incorporated into NPSS, is the ability to carry out
computations at different levels of analysis detail.
Because it is expected that a detailed analysis of an
entire propulsion system would be so complex and
computationally intensive as to make it cost-prohibitive, a
method of integrating different leveis of analysis is
desired. This concept, termed zooming, would allow
physical processes, resolved from a detailed analysis, to
be integrated within a system analysis performed at a
lower level of detail; and conversely, to allow an engineer
or scientist to “zoom in” on a particular component of the
total system in order to investigate the relevant physical
processes within that component. This provides a most
desirable feature of interactive simulation: various
design alternatives can be rapidly assessed. To support
this feature, interactive graphics visualization may be
incorporated within the simulation to provide the user
with the ability to view the current state of the simulation
through the display of the most recent simulation results.

1.3 Report Outline

This report describes the development a prototype
NPSS simulation executive designed to provide support
for one zooming strategy. The prototype utilizes a
lumped-parameter model for transient and steady-state
propulsion system simulation, with the exception of the
fan component, which is zoomed to a three-dimensional
level and the inlet component which is zoomed to a one
dimensional model. The simulation executive provides
interactive graphical control of various Zzooming
parameters, and interactive visual monitoring of the
three-dimensional flow field in the fan during the
simulation.

Section 2 introduces the AVS Visualization
environment. In order to more fully understand the
manner in which TESS operates and the constraints
placed in the development of TESS by the graphical

o0 op3 if

Endinig

titers Happers » Data Ontpat.

yraph vievspr

nozzle gross thrust
T ' . '

Lonpres

Figure 1.1 - TESS Graphical Simulation Environment

system, it is necessary to have some knowledge of the
AVS system operating characteristics.

The mathematical models for each of the propulsion
system components currently provided in TESS are
described in Section 3. The engine components
currently included in TESS are all one-dimensional,
lumped-parameter models.

Sections 4 and 5 describe the operating methodology
used to run the simulation and its implementation within
the AVS framework. Because of the operational
characteristics of AVS, certain difficulties had to be
overcome in order to control the simulation. These
difficulties and their solutions are discussed in Section 5.

Section 6 gives a description of each of the modules
used to represent engine components within TESS. The
graphical interfaces for each module in TESS are
described along with a description of how the modules
are to be connected.

The results of a simulation of a test engine using
TESS are compared with output from another computer
simulation code (DIGTEM) in Section 7.

In Section 8, the zooming concept is described in
more detail, with specific application to the fan
component in a turbofan propulsion system. The
graphical zooming framework, comprised of TESS, a
fully three-dimensional Navier-Stokes/Euler flow analysis
package capable of providing detailed flow analysis of
the fan component in a turbofan engine, a parallel
distributed message passing package, and visualization
tools, created to aid the user in monitoring the zooming
process, are presented.

In Section 9, a final zooming application is presented.
Here, a one-dimensional, finite-difference model, used to
simulate the inlet of a jet propulsion system is zoomed
from the TESS lumped-parameter model.

2.0 Application Visualization System
(AVS)

in order to fully discuss the development of TESS, it is
necessary to have an understanding of the AVS
visualization environment. AVS is a software tool
designed primarily to provide scientific and engineering
users with the ability to easily analyze and view their
data. It allows users to construct visualization
applications by combining software components, known
as modules, into executable flow networks that are used
to filter the data, map it to pixel or geometry form, and
render it on the display screen (see Figure 2.1).

Flow networks, or simply networks, are constructed
by direct user manipulation of modules in the AVS
Network Editor programming interface. Using the
Network Editor, a user creates an application by
selecting modules from a menu and drawing
connections between them (see Figure 2.2). Data are

A.S

(Untilied)

Datadnput

Status (press 1o disae]

5 Modute Jibrary

either read in from a file or generated by a module at the
top of the flow network and passed to the module(s)
below. The path of data exchange is represented
graphically by the connecting wires between the
modules - the data are referred to as being “passed
along the connection wire”. In this manner, controi of
data exchange between modules is defined by how the
modules are connected. As each module receives new
input data it executes, generating new output data that is
sent to the next module in the network.

The inclusion of a rich set of modules in the AVS
system means that in many cases, an entire
visualization application may be constructed using
standard modules, removing the need to resort to
traditional procedural programming. In the event that
additional programming is needed, AVS allows users to
create their own new modules and dynamically load
them into AVS networks.

It is this extensibility of AVS that provides the ability to

m— p—

Hiters HMappors :

frplay preaiap

cuaes n

o sl o~

color range "

; l _ml'm bounds W

sy e

Figure 2.1 - AVS Data Visualization Environment

extract scalar

color range

extract scalar |

render geometry Il

display pixmap

Figure 2.2 - Typical AVS Flow Visualization Network

utilize AVS as a simulation environment for the engine
simulation code. Since AVS was not designed for
propulsion system simulation, the visualization modules
supplied with AVS are typically not of any use in
constructing an engine model. But because AVS allows
the user to create their new modules and load them into
the system, modules representing each of the engine
component objects may be created and used in
developing engine models.

2.1 Modules

The module is the AVS computational unit with which
applications are buill. A module, written in either
FORTRAN or C programming languages, is designed to
be a powerful, yet easy to use, processing component. It
functions by taking typed data as an input, operates on
that data by executing the code in its computation
function, generating new output data which is then sent
to the next module(s) in the network.

Each module is capable of being instantiated multiple
times within an application by virtue of the fact that each
module executes within its own UNIX process. This
allows each module to operate independently, even
though modules of the same type have the same
FORTRAN or C code. Thus, AVS modules are able to
emulate some of the characteristics of objects in an
object-oriented programming language, such as muitiple
instantiations of objects and data encapsulation [5],

without programming in an object-oriented language.

Because AVS modules operate in separate UNIX
processes, AVS provides the ability to execute modules
remotely on another host of the same or differing
hardware as the local machine running AVS. This
provides the ability to construct efficient processing
networks by running computationally intensive modules
remotely on powerful hosts such as mini or
supercomputers.

A module’s interface to the user is the module icon,
(see Figure 2.3). Each module's interface is simple and
consistent and will include the following:

« A set of input data ports

« A set of input parameters
* A set of output ports

Figure 2.3 - Module Interface: The Interface icon

2.1.1 Data Inputs

Data are input to a module through one or more input
ports of the module. These input ports appear as colored
bars located along the top edge of the module icon. The
color of the input ports indicates the type of data the
module is capable of receiving. Some of the data types
supported by AVS are: field, colormap, geometry,
integer, floating point, string and user-defined data. AVS
allows only those modules sharing common data types
to be connected when constructing a network. The input
ports are classified as either REQUIRED or OPTIONAL.
If a module has a REQUIRED input port, that port must
be connected to another module, in order for the module
to execute.

2.1.2 Input Parameters

A module’s input parameters control the manner in
which a module processes the input data. They provide
the user with interactive control of a module’s operation
along with providing an interface to allow the user to
enter input data. Input parameters also can be
implemented so that they reflect real-time changes of
certain parameters in the module.

A rich set of control widgets is available to control the
module’s input parameters. AVS includes the following
types of control widgets (see Figure 2.4):

*» Dials and Sliders indicate integer or floating point
numbers

» Typeins allow the user to specify a character string
or numeric values

» Toggles provide on/off control for various parameters

« Radio Buttons provide mutually exclusive choices to
the user

* File Browsers allow a user to access system files to
read, or create a file to which output is sent

Hile Browser

acefreedinidgets 1ot

Output file

2.1.3 Data Outputs

Once a module has processed its input data, it may
be output through one or more module output ports.
These appear as colored bars located along the bottom
edge of the module icon. As with the input ports, they are
color-coded to indicate what type of data the module is
outputting.

2.2 Flow Networks

By using the AVS Network Editor, a mouse driven
graphical interface, a user can select modules from a
menu, and connect the modules together to form a
network. The network can then be executed as desired
and later saved to disk to be recalled when needed.

2.2.1 Network editor

The Network Editor {see Figure 2.5) is accessed from
the AVS Main menu and is comprised of four windows:
Network Control Panel, Network Editor Menu, Module
Palette, and Workspace (see Figure 2.6).

The user constructs a network by selecting a module
from the Module Palette using the mouse pointer. The
pointer allows the user to focus attention and initiate
action on patrticular portions of the display. The selected
module is then dragged from the Module Palette into the
Workspace. When the module is placed in the
Workspace, it becomes an instance of the module listed
in the Module Palette. At this time, the widgets
controlling the input parameters for the module will
appear in the Network Control Panel window. As
described in Section 2.1.2, these widgets provide
interactive control over module execution and can now
be adjusted as desired. Also, the name of the module
will appear in the stack list browser widget in the
Network Control Panel window (see Figure 2.7).

Output Panel

Figure 2.4 - AVS Control Widgets

Huntfind ¢ A7 Letwiork Editae AV Monlule thrary . M supported 8

Moypern Data Output

Sritis (press to dis.dile)

Figure 2.5 - AVS Network Editor

Network
Editor Module Palette
Menu

Network

Control

Panel

Workspace

Figure 2.6 - AVS Network Editor Windows

{Untitled)

Status (press to disable)
Top Level Stack

Selector

compressor

Figure 2.7 - Top Level Stack Browser

If another module is dragged from the Module Palette
into the Workspace, its input parameter widgets will
appear in the Network Control Panel window, replacing
the previous module’s widgets, and the name of the
module will appear in the list browser widget. Each
module has a page which holds the input parameter
control widgets for that module. When more than one
module is in the workspace, there will exist a page for
each of the modules. These pages are then placed in a
stack, much like pages of paper can be organized by
placing them in a stack. The stack list browser allows the
user to access a page from the stack by selecting it from
the list using the mouse pointer.

The connecting lines between modules are
established by using the mouse to connect the module’s
input and output ports. This defines the network and
specifies the manner in which data flows in the
application. For the engine simulation, the connecting
lines represent the connection between each of the
components of the engine along which data are passed.
In physical terms, the connecting lines represent both
the flow path for fluid through the engine and the
structural connections along which mechanical energy is
transmitted.

2.2.2 Flow Execution

The execution of an AVS Network is controlled by the
AVS kemnel, which in turn, controls the AVS Flow
Executive. The Flow Executive determines when a
module should execute based on certain criteria, and
then directs it to execute. When the AVS Flow Executive
is active (the user may turn it off to stop the network from
executing), it determines whenever any of the module’s
input ports or parameters change. If the input port of a
module is connected to the output port of another
module, the AVS kernel marks the input port as having
changed when it receives new data from the other
module. A parameter is marked changed when its value
has been modified by the user. In either case, the AVS

Flow Executive then schedules the module to execute its
computation function based on the new input data or
input parameter.

The manner in which the network operates is
dependent in part on the type of modules which
comprise the network. There are two types of AVS
modules: Subroutines and Coroutines.

* Subroutine modules are essentially passive, much
like subroutines in a traditional program. When a
subroutine module is instantiated, it's UNIX process
sleeps until the Flow Executive signals it to execute.
The subroutine module then takes its input data,
operates on it, passes the data to the next module in
the network, and returns to its dormant state.

« Unlike a subroutine module, the coroutine module’s
UNIX process is always active. Thus, the coroutine
module can access input data, operate on the data
and output it to the network on its own initiative
instead of only doing so when signaled by the Flow
Executive.

It is important to understand that execution of a
subroutine module is completely within the control of the
AVS Flow Executive. Because the execution of the
modules is linked to the changing of input port data and
input parameters, it is not possible to explicitly control
module execution'. When subroutine modules are
connected to form a network, each module executes
only upon receiving changes in its input data. This type
of operation may be thought of in terms of the domino
theory. That is to say that once the first module in the
network executes, the remainder of the modules will
execute much like dominos in a line, tumbling
sequentially after the first one has been pushed over.
Once the process has begun, all of the modules operate
on there own when triggered by the previous module.

All of the modules used in TESS are subroutine
modules with the exception of the SYSTEM module,
which is a coroutine module.

2.2.3 Data Flow

The AVS applications which are built by connecting
modules together, function by passing data from module
to module. Because the modules (normally) run within
separate UNIX processes, some form of interprocess
communication must be available to pass the data along
from module to module. One method which allows the
sharing of data among modules within different
processes utilizes shared memory regions. The data
from the output of a module is placed in a memory region
which has been created by the AVS kernel by making
UNIX system calls. Multiple modules may then access
the single copy of data by making UNIX system calls.

1. Actually, AVS has made it possible to control subroutine and
coroutine module execution explicitly using the Command Language
Interface (CLI). The CLI provides a list of commands which can be
used to control certain aspects of network operation, such as exe-
cuting a module. At the time TESS was developed, this option was
not available, and thus, was not implemented.

The shared memory region method of interprocess
communication is the normal method which AVS uses to
communicate data between processes. The AVS kernel
attempts to share data when possible by placing data in
the shared memory region. Pointers to the memory
addresses are then passed between modules to allow
the modules to access the necessary data. By sharing
data between modules, memory usage is reduced and
processing speed is increased because the data does
not have to be copied between processes.

To better explain how data is passed between
modules, consider three modules connected as shown in
Figure 2.8. Figure 2.9 shows the corresponding data
flow diagram for the network. M1, M2 and M3 are the
modules, K is the AVS kernel, and D1 and D2 are the
shared memory areas allocated for data. The AVS
kernel’s control communication channel {indicated by the
dotted line) informs M1 that M2 requires its data. M1
then places its output data in the shared memory region
(indicated by the arrows). The AVS kemel's control
communication channel then informs M2 that M1 has
sent its data to the shared memory region, D1. M2 is
then able to access the data in the shared memory
region. In this method, there is only one copy of M1's
output data.

Figure 2.9 - Data Flow Between Kernel, Modules and
Memory Regions

Once the data from M1 has been established in the
memory region D1, M2 can copy the data into its internal
arrays. This is done so that the module can operate on
the data without affecting it directly. Once M2 has

operated on the data to create output data, it is placed in
the next memory region, D2. M3 is now notified by the
kernel that it has new input data and is scheduled to
execute and may access its data from D2.

2.3 TESS Data Passing Structure

As stated in Section 2.1.1, the data passed along the
connecting wires is typed. AVS provides a variety of data
types: field, colormap, geometry, integer, floating point,
string and user-defined data. It was found in the
development of the TESS code, that it would be
necessary to exchange both floating point and integer
values between modules. If the floating point and integer
data types were utilized, this would require that each
module have both integer and floating point input and
output ports. Furthermore, there would be two
connecting lines between connected modules: one for
each of the data types. This would greatly complicate the
visual representation of how the engine component
modules were connected.

To solve this problem, the user-defined data type was
utilized. As the name suggests, AVS allows the user to
define their own data types and to use the data types for
inter-module communication. In TESS, the user-defined
data type is defined in the header file
tess_user_data.h, and has the form of a C
structure. The variables defined in the struct are the
variables needed by the various modules available in
TESS (for more information on these variables see [3])-
The contents of tess_user_data.h are listed
below:

typedef struct {
int nsys;
int nauxvar;
float time;
float massflow [n];
float fuelflow [n]};
float temp [n];
float press [n];
float rpm [n];
float enthalpy [nl;
float strdmass [n];
float faratio [n];
float energy [nl;
float volume [(n];
float massflow_deriv [n];
float temp_deriv [n];
float rpm_deriv [nl];
float strdmass_deriv [n];
float thrust [n];
float vargeom [n];
int chkflag [n];
} tess_user_data;

Each of the variables (with the exception of nsys,
nauxvar, and time) is a vector array of length n. The
value of n is dependent on the maximum number of

modules likely to be used in an engine simulation, and is
used to reserve memory space. The vector indices (1, 2,
3, ..n) correspond to the different modules in a
simulation. Data corresponding to each module is then
arranged within the vector, and made available to the
system, providing a structure for accessing and storing
information about the state of each of the modules in the
system.

For each of the memory regions which is used to store
data common to the connected modules (see Section
2.2.3), the data in the memory region will be stored in the
format defined in the tess_user_data.hfile.

3.0 Engine Component Mathematical
Models

The mathematical model for each engine component
currently included in TESS is presented in this Section.
The engine component models are one-dimensional,
lumped-parameter, thermodynamic models. The
unsteady forms of the continuity, momentum and energy
equations are used to generate ordinary differential
equations which are used to model the complete
propulsion system. A detailed discussion of the
development of these models is given in [4].

3.1 Gas Properties

The thermodynamic properties of air and fuel-air
mixtures are calculated by considering variable specific
heats and no dissociation. Curve fits of data found in [6]
are used to compute specific heats, specific heat ratios,
and specific enthalpies from given values of temperature
and fuel-air ratio. For each engine component, the
following equations are used

<p = f(T, (f/a)) (3-1)
R = £(/a) @2)
¢, =c,~R 3-3)
v= i—" @)
h = ST, (7)) @5)

While the gas constant, R, is in general a variable
when mixtures of gases are considered, according to
Szuch {7], the sensitivity of R to the fuel-air ratios in a
turbojet simulation could be neglected. Therefore, the
gas constant of air may be used in the ideal gas law. The
use of a constant value of R also prevents the
occurrence of algebraic loops which require iterative
solutions.

3.2 Bleed

Bleed components are used to provide turbine cooling
and auxiliary drive air. Bleed air is assumed to be
provided from a high pressure source (such as the exit o
a compressor), and supplied to a component which is at
a sufficiently low pressure so that flow in the bleed
passage is choked. The following describes the equation
for the bleed model.

The mass flow rate, m, of fluid in the bleed passage is

- 2 (y+1
ho= ’__ 4 |2G-D "
m Apin RTinI:(Y+ 1)] (3 6)

where p, = Stagnation pressure at the bleed inlet
T,, = Stagnation temperature at the bleed inlet
A = Cross sectional area of the bleed pas-
sage
y = Specific heat ratio of fluid in the bleed
passage

3.3 Combustor

The combustor provides thermal energy addition to
the system through the combustion of fuei. The heat
addition associated with the burning of the fuel is
assumed to take place in the mixing volume directly
downstream of the combustor. Stagnation pressure
losses are included in the combustor model. Because of
the greater temperature rise through the combustor, the
assumption of constant specific heat ratio based on the
inlet conditions could lead to difficulties in matching
steady-state conditions. For this reason, an “average”
combustor temperature is computed based on inlet and
exit temperatures, and used to compute an average
specific heat ratio and enthalpy of the working fluid in the
combustor.

The mass flow rate in the combustor is

. [P,-nwm-r'om)}
ms= | ——"

8-7
KcTin

where p;, = Stagnation pressure at the combustor

inlet

Pow = Stagnation pressure at the combustor
exit

T,, = Stagnationtemperature at the combustor
inlet

K, = Combustor pressure loss coefficient

The specific enthalpy of the fluid in the combustor is
based on the average temperature of the combustor air-
fuel mixture. The average temperature is given as

Toyy = BTin+ Tpyy (1-B) (3-8)

where T, = Average stagnation temperature in the
combustor
T,, = Combustor outlet stagnation temperature
B = Combustor interpolation constant

The combustor fuel air ratio (#z), is computed as

- mfuel
(f/a) = (f/a),,+ (/) in+1](7n'_) (3-9)

gas

where (f/a);, =The fuel air ratio of the gases entering

the combustor

mye =The fuel mass flow rate being added to
the combustor
hgas =The mass flow rate of the gases enter-

ing the combustor

10

The enthalpy of the air-fuel mixture in the combustor,
h, is then determined from curve fit data based on the
average combustor temperature and the combustor fuei-
air ratio:

h=f(T,,, (/a)) (3-10)
The rate of energy being added to the working fluid
due to the combustion of the fuel, E,,.;. iS

Eomp = Mper' M HVF (3-11)
where 1 = Combustor efficiency

HVF = Heating value of fuel

E,,mp is referred to as the combustor energy term and
represents the energy flux term for the combustor due to
fuel combustion. Because the combustion process is
assumed to take place in the downstream mixing
volume, E.,,,; is the rate of heat addition to the mixing
volume due to fuel combustion. Heat addition to the
mixing volume is given by the 3 Q/dt term in the mixing
volume dynamic energy equation. Thus, E,,; will be
used by the mixing volume to account for the heat

addition due to fuel combustion.

3.4 Compressor

Compressor performance is represented by a set of
overall performance maps normalized to design point
values. Baseline performance maps provide normalized
inlet-corrected mass flow rate and normalized efficiency
as a function of normalized pressure ratio and
normalized, inlet-corrected spool speed. Shifts in
normalized inlet-corrected mass flow rate, based on (un-
normalized) off-schedule values of variable stator
position, are also provided as a function of normalized
pressure ratio and normalized inlet-corrected spool
speed. Because of the greater temperature rise through
the compressor, the assumption of constant specific heat
ratio based on the inlet conditions could lead to
difficutties in matching steady-state conditions. For this
reason, an ‘“average” compressor temperature is
computed and used to compute an average specific heat
ratio. The following equations describe the compressor
model.

The normalized inlet-corrected mass flow rate value is
obtained from the baseline compressor performance
map. The map represents compressor performance with
the variable geometry at nominal, scheduled position:

mha.ve, cn = f(Nc. n' Apn) (3'12)
= Baseline inlet-corrected mass flow
normalized to design point
= Corrected spool speed normal-
ized to design point
Ap, = Stagnation pressure ratio normal-
ized to design point

where 140 cn

N,

on

The normalized corrected mass flow rate which
accounts for off-schedule geometry effects is obtained
from the variable-geometry effects performance map:

1 = f(CVGP, AP,)

var,c, n

(3-13)

= Inlet-corrected mass flow for off
schedule geometry, normalized to
design point

= Compressor variable geometry
position value

where ity

cVGP

The mass flow rate in the compressor may be given

’T. I

. . . ,d

mha.ve, on (1+ mvur, [n) |:md 7"'1](=] (3-14)
in pin. d

where my = Design point value of compressor mass
flow rate
T,, = Stagnation temperature at compressor
inlet

T,,a = Design point stagnation temperature at
compressor inlet

pin = Stagnation pressure at compressor inlet
pinga = Design point pressure at compressor
inlet

When the normalized inlet-corrected mass flow rate at
the design point, 7,4, .., is returned from the map, the
value should be exactly 1.0. However, because the map
values are determined by an interpolation routine (see
[3], Appendix C), it may not be exactly 1.0. This error can
be eliminated by introducing a correction coefficient,
W,.r» Which when multiplied by the returned map value
will make the retumed map value be exactly 1.0. The
compressor mass flow rate correction coefficient is

- ! (3-15)

m
(base, c, n) map @designpt

corr

Placing the correction coefficient into Eq.(3-14) gives

'T. P.

. . B ,d in

Mpase, c,n (1+ Myar, c, n) [md 7’? :l(P] ' Wcarr
in in,d

(3-16)

The normalized adiabatic efficiency value is obtained
from the baseline compressor performance map.

= fmap (Nc, n’ APn) (3-17)

Tlbase. on

where M puecn = Adiabatic efficiency, normalized to
design point
The adiabatic efficiency, n, is then computed by
multiplying the normalized adiabatic efficiency, n ,, by the

design adiabatic efficiency value, n 4

n=m,n, (3-18)

11

The stagnation temperature rise across the
compressor is calculated using isentropic relationships
for stagnation temperature and pressure. The stagnation
temperature rise is determined using an average
temperature which is computed using a temperature

interpolation constant:
Tope = BT+ T, (1= B) (3-19)

where 7,,, = Average stagnation temperature in the

compressor

T,.. = Compressor outlet stagnation tempera-
ture

T,, = Compressor inlet stagnation temperature

B = Compressor interpolation constant

T, is used to determine the constant specific heat of

the compressor from curve fit data. With the constant

specific heat known, the isentropic stagnation
temperature rise is defined as
in Jideal Pin

where p,, =Compressor inlet stagnation pressure
Pour = Compressor outlet stagnation pressure
y = Compressor constant specific heat ratio

Defining the stagnation temperature rise parameter as

out, ideal
. - -2
T T. T b E-21)

in in

(él‘) _ (Tuut,ideal—Tin) - T
ideal

in

then, Eq. (3-20) becomes

(AT) [pm“](Y—l)/Y 1
Tin ideal Pin

The stagnation temperature at the compressor outlet
is then

(3-22)

(AT/T.)
T = [—-———n”' “"""+1]T.

n

(3-23)

out ~

The compressor temperature correction coefficient is

T _ AT/Ti"ideal@designp{
corr ~ ATd/T‘

in,digeal

(3-24)

Placing the correction coefficient into Eq.(3-23) gives

(AT/T,)
our = {——— (3-25)

ideal + 1} T
n

n ’ corr

The enthalpy corresponding to the temperature at the
compressor outlet, &,,, is determined from curve fit data
based on values of stagnation temperature and the fuel-
air ratio (f/a) in the compressor:

houl = f(Tmu’f/a) (3-26)
The compressor functions by transmitting mechanical
energy (supplied by the shaft) into kinetic energy in the
fluid flow. The rate of this energy conversion is calculated
as the difference in fluid energy at the inlet and exit of the
compressor and is given by the following equation:

Ecomp = m(h,, -) (3-27)
where E,, = The rate of energy being added to the
working fluid
m = The mass flow rate of the working fluid
in the compressor
m = The specific stagnation enthalpy of the
working fluid at the compressor inlet
h,,. = The specific stagnation enthalpy of the
working fluid at the compressor outlet

h

E omp is referred to as the compressor energy term,
and represents the rate of energy being transferred from
the shaft to the working fluid. This term is used to
compute the torque applied to the compressor by the
shaft, and is utilized in the dynamic energy balance
equation given in the shaft mathematical model.

3.5 Duct

The effect of fluid momentum on the transient
behavior of the engine is considered in the duct
component. The model assumes the duct is adiabatic
with constant area and length; and the pressure loss due
to frictional effects is included. The following is the
dynamic flow equation for the duct:

dm _ (A Kdmzrin
dar - L Pin=Pous™ - P

n

(3-28)

where A = Cross sectional area of the duct
L = Length of the duct
pin = Stagnation pressure at the duct inlet
Pow = Stagnation pressure at the duct exit
K; = Duct pressure loss coefficient
m = Fluid mass flow rate in the duct
T,, = Stagnation temperature at combustor

inlet

3.6 Flight Conditions and Inlet
(Environment)

Stagnation temperature and pressure at flight altitude
are determined from standard atmospheric data tables:

12

Paiy = f(alt)
T, = f(alr)

(3-29)
(3-30)

where alr = Altitude
pa: = Stagnation pressure at altitude
T,; = Stagnation temperature at altitude
T,;, = Sea level standard ambient temperature

Although no inlet to the engine is included, simple
isentropic and empirical relations are used to determine
the stagnation conditions at the “inlet” exit. The
stagnation temperature at the inlet exit based on the
flight Mach number is computed as

2
-DMg,op
T, = Tu,{l + ——Z—L (3-31)

where T,, = Stagnation temperature at inlet exit
Y = Specific heat ratio of ambient air
(y=1.4)

My, = Flight Mach number
A steady-state, military specification inlet recovery

characteristic is used to determine the stagnation
pressure at the inlet exit:

Nipger = 1 it (Mpep <1

135 .
Ninter = 1=0075 (Mg, — 1) if (Mgign <1

Tm., Y/ (y-1)
Pexir = ninlelpall T (3‘32)
alt
where 1, = Inletrecovery characteristic
Do = Stagnation pressure at inlet exit

The enthalpy of the air at the flight altitude is
determined from curve fit data based on the stagnation
temperature at altitude and the fuel-air ratio (which is
zero):

b= f(T,, (7a)) (3-39)

3.7 Intercomponent Volume (Mixing
Volume)

An intercomponent volume (mixing volume) is placed
between engine components. In the volume, the storage
of mass and energy occurs and the dynamic forms of
continuity, energy and state equations are used to
generate differential equations which can be solved for
the stored mass, temperature and pressure. The
following develops the dynamic equations stated above.

The rate of change of mass in the control volume is

dM , .
I P ED W (3-34)
inlets exits
where M = Mass of working fluid in control volume

rm = Fluid mass flow rate
The rate of change of temperature in the control

volume is obtained from the first law of Thermodynamics
as

inlets inlets

, . 80 &
i [2 mh—h,, Y m+d_?—7vtq

dar Mcv
(y-1)T , .
+—1W_—|:2 m-— Zm] (3-35)
inlets exits
where T = Stagnation temperature of working

fluid in control volume

8Q/dr = Rate of energy entering control vol-
ume due to heat transfer

8 Wrdr = Rate of energy leaving control volume
due to all work interactions except
flow work

h = Specific stagnation enthalpy of work-
ing fluid entering the control volume

hae = Specific stagnation enthalpy of work-
ing fluid in the control volume

u = Internal energy of working fluid

Y = Constant specific heat ratio of working
fluid in control volume

¢y = Constant-volume specific heat of

working fluid in control volume

At the (steady-state) design point, the above
differential equation should be exactly zero, indicating
that the mixing volume energy balance is satisfied at the
design point. However, model incompatibilities and
numerical inaccuracies may result in a non-zero
temperature derivative value. To zero the derivative
value associated with the energy balance, a correction
coefficient, E,,,,. is introduced into the above equation to
force it to zero

[(havg Sy m)— 3 mh]
- inlets inlets

corr = (3-36)
[SQ o

dr ar

where all values are design point values. If the 8 Q/dt
term is zero, then E_,,, is set to 1.000. Once determined,
the correction coefficient then becomes part of the model
and the governing differential equation associated with
the energy balance for the mixing volume becomes:

13

. , 30 oW
dT [Z mh—havg 2 m+Ecorr(_d_;_I)j|

inlets inlets

dt Mc,

+ﬂ%[2m—2m] (3-37)

inlets exits

3.8 Nozzle

A convergent-divergent nozzle configuration is
assumed for the nozzle model, with a convergent-only
nozzle being considered a subset of the more general
model. A relatively detailed mathematical representation
of the thermodynamics is used, including the treatment
of normal shocks in the divergent section. The
stagnation pressure losses associated with the shocks
are computed along with the gross nozzle thrust. The
following equations define the nozzle model.

The ideal mass flow rate for a nozzle operating in
“choked” condition (i.e. the Mach number at the nozzle
throat is 1.0) can be determined from isentropic relations
[8]. Pressure losses due to boundary layer effects and
departure from one-dimensionality can be calibrated into
the ideal mass flow rate above equation through the use
of a flow coefficient, C,, to obtain:

o asc | 2 qr+/2g-1 238
= Pinf er[(yn)] (3-28)
where p;, = Nozzle inlet stagnation pressure
T, = Nozzle inlet stagnation temperature
R =Ideal gas constant
v = Nozzle specific heat ratio (y=1.4

is used)
A* = The critical nozzle cross sectional area

The nozzle gross thrust, F, may be calculated as

F=nmv,+A, (p,—p,.;) (3-39)
where p, = Static pressure at nozzle exit plane

Pow = Ambient static pressure

v, = Nozzle flow exit velocity

A, = Cross sectional area at nozzle exit plane

The compressible flow tables used in computing the

nozzle operation parameters assume a specific heat
ratio of 1.4. According to Szuch [7], the specific heat ratio
in the tailpipe of a turbofan engine will be lower than this
value. To compensate for this error when setting up the
mode! to match the user-defined input data, correction
coefficients are computed to give the desired values of
gross thrust and mass flow rate for the nozzle. The
correction coefficient for the gross thrust, . is the
ratio of user-defined design gross thrust, F,;, to the
calculated design gross thrust, F,, given by the above
equation:

(3-40)

Rl

corr

o

Once calculated, this value is used in the thrust
equation at design and off-design conditions. and Eq.(3-
39) is then

F= (mve) Fcorr + Ae (pe _poux) (3-41)
The correction coefficient for the mass flow rate, W,,,,,

is the ratio of user-defined design mass flow rate to the

calculated design mass flow rate given by Eq.(3-38):

(3-42)

Once calculated, this value is used in the mass flow
equation, Eq.(3-38), at design and off-design conditions
to give the nozzle mass flow rate

o « ¥ 2 (y+ N /2(y-1)
o= Weord iy A*Cy RT,."[(Y+1)]
(3-43)

The exit velocity of the nozzle flow is determined using
the following equation

v \[2YRT,, 172
- {2
vy (y+1)

where v, = Flow velocity at the nozzle exit
C, = Nozzle velocity coefficient
v, = Flow velocity upstream of shock

vy = Flow velocity downstream of shock

(3-44)

Defining the critical cross-sectional area, A*, as the
area where the flow is sonic (M=1), the ratio of some
arbitrary nozzle cross-sectional area to the critical area
may be used to determine the pressure ratio across the
nozzle which causes the flow to be sonic in the nozzle at
the critical cross-sectional area. The pressure ratio
which causes the flow to be sonic is known as the critical
pressure ratio

(2] -A(2)

where p, =Ambient static pressure at location of A
pin = Stagnation pressure at nozzle inlet
A = Arbitrary cross-sectional area of nozzle
A* = Critical cross-sectional area of nozzle
The critical pressure, for a given area ratio, is
determined from one-dimensional isentropic tables for
compressible flow. Sonic flow will occur at the minimum

(3-45)

14

cross-sectional area of the nozzle which is at the throat,
and Eq. (3-45) becomes

(’i_u_'] :f(ﬁ)
pin cr A*

3.8.1 Subsonic Flow

£ (PpudPin) > (PoudPin)er the flow is subsonic throughout
the nozzle. In this case,

(3-46)

P =P

e out

(3-47)

The area to which the throat area would have to be
reduced to result in sonic flow (M=1) based on the
pressure ratio value, may be determined from the one-
dimensional isentropic compressible flow tables. If A, is
used as the arbitrary cross sectional area, then the ratio
of the exit area to the critical cross-sectional area may be
found

A — out
(%) - (%)

A* is then determined using the following equation

(3-48)

A
A= — 2 (3-49)
(A,/A%)

The value of A* may then be used in Eq.(3-43) to
compute the mass flow rate in the nozzle. The velocity
ratio term (v,/v,) is 1.0 since there is no shock. This value
is substituted into Eq.(3-44) to compute the nozzle exit
velocity.

3.8.2 Sonic Flow

€ (PoudPin) = (Powd/Pin)er then the flow is sonic in the
nozzle. In this case, the nozzle exit pressure is equal to
the ambient pressure

Pe = Pyus (3-50)

Since (puuPin) = (PoudPin)er the flow is sonic at the
minimum nozzle cross-sectional area which is the throat.
Thus, the throat area is the critical area for the nozzle
and Ay, May be used in Eq.(3-43) in place of A* to
compute the mass flow rate in the nozzle. The velocity
ratio term (v,/v,} is 1.0 since there is no shock. This value
is substituted into Eq.(3-44) to compute the nozzle exit
velocity.

3.8.3 Supersonic Flow

If the pressure ratio is less than the critical pressure
ratio, (Puu/Pin) < (PoudPin)er the flow is supersonic in the
nozzle. If the nozzle is a converging-diverging nozzle,
normal shocks will likely be present in the flow and the

pressure losses are accounted for. To determine if the
nozzle is a converging-only or a converging-diverging
nozzle, the ratio of the exit area to the throat area is
compared.

Converging-Only Nozzle (A ,xi/Ayroar = 1)

For sonic flow in a converging-only nozzle, the throat
area is the critical area for the nozzle and A,,,,,,, may be
used in Eq.(3-43) in place of A* to compute the mass
flow rate in the nozzle. The velocity ratio term (v./v,) is
1.0 since there is no shock. This value is substituted into
Eq.(3-44) to compute the nozzle exit velocity. The nozzle
exit plane stagnation pressure will be less than the
ambient pressure. This value may be computed using
the critical pressure ratio

p.=p (”o_w]
¢ " Pin Jer

This value may be used in Eq.(3-39) to compute the
nozzle pressure drag.

(3-51)

Converging-Diverging Nozzle (A ,.i/Awmroar) > 1)

For supersonic flow in a converging-diverging nozzle,
the throat area is the critical area for the nozzle and
Apmat May be used in Eq.(3-43) in place of A* to
compute the mass flow rate in the nozzle. The
converging-diverging nozzle, operating in the supersonic
region, will likely have normal shocks present in the
divergent portion of the nozzle or outside of the nozzle.
To determine if the shock is outside the nozzle, the
pressure ratio at which the shock is in the nozzle exit
plane is given by the following equation

(gﬂ,) _ /P (/1)
es

(3-52)
Pin (/P)

= Stagnation pressure downstream of
shock

p, = Stagnation pressure upstream of shock

psy = Static pressure downstream of shock

psx = Static pressure upstream of shock

es = Expelled nozzle shock

where p,

The parameters given in the above equation may be
determined from shock tables such as those given in
reference 19.

Shock in exit pl

If (PourPin) = (PoudPin)ess the shock is in the nozzle exit
plane. The velocity ratio term (v,/v,) is determined from
the shock tables based on the Mach number upstream of
the shock

= f(m) (3-63)

v

3

15

The exit pressure will be returned to ambient pressure
due to the shock, so
Pe = Pour (3-54)
This value may be used in Eq.(3-39) to compute the
nozzle pressure drag.

Shock external to nozzle

W (PoudPin) < (PoudPindess the shock has been expelled
from the nozzle. The velocity ratio term (v/v)) is
determined from the shock tables based on the Mach
number upstream of the shock

vx
5 = f(M)

(3-55)

i

This value is substituted into Eq.(3-44) to compute the
nozzle exit velocity. The nozzle exit stagnation pressure
may be computed using the critical pressure ratio

p=p (”_uf]
¢ " pin cr

This value may be used in £q.(3-39) to compute the
nozzle pressure drag.

(3-56)

Shock internal to nozzle
it (pvu/pin)cr > (puur/[’in) > (pour/piu)e.\'v the shock is in the
divergent section of the nozzle. In this case, the nozzle
exit pressure is equal to the ambient pressure
P. = Pous (3-57)
This value may be used in Eq.(3-39) to compute the
nozzle pressure drag. The velocity ratio term (v,/v,) is
determined from the shock tables based on the Mach
number upstream of the shock

<

== f(M) (3-58)

-

This value is substituted into Eq.(3-44) to compute the
nozzle exit velocity.

3.9 Shaft

The most significant factors in determining the
transient behavior of a turbojet are the spool moments of
inertia. The spool is considered the complete
compressor-shaft-turbine assembly. The differential
equation representing the change in spool speed is

dN _ (30} 1
dar - (7{) 7N[2Ec-omp+zEturh] (3-59)

where [= Polar moment of inertia of the

spool(compressor+shaft+turbine)

J = Joulean mechanical equivalent of
heat constant

N = Shaft rotational speed

LE.mp =Thesummation of the energy flux
term, mAh, for each compressor
attached to the shaft

ZE,; = The summation of the energy flux

term, mAH, for each turbine
attached to the shaft

At the (steady state) design point, the above
differential equation should be exactly zero, indicating
that the spool energy balance is satisfied at the design
point. However, model incompatibilities and numerical
inaccuracies may result in a non-zero spool derivative
value. To zero the derivative value associated with the
energy balance, a correction coefficient, E,, is
introduced into the above equation to force it to zero

_ ZEcomp@designpl

= {3-60)
cor _zErurb@designpl
Once determined, the correction coefficient then
becomes part of the model and the governing differential
equation associated with the energy balance for the
spool is

dN _ (3041
dar = (_) iﬁ[zEchmp+ (Ecorr.zErurb)] (3-61)

3.10 Turbine

Turbine performance is represented by a set of overall
performance maps normalized to design point values.
Baseline performance maps provide normalized turbine
inlet flow and normalized enthalpy drop parameters as a
function of normalized pressure ratio and normalized
inlet-corrected spool speed. Cooling bleed flow for the
turbine is assumed to reenter the cycle at the turbine
discharge, although a portion of the bleed flow is
assumed to do turbine work.

The normalized turbine inlet flow parameter value is
obtained from the turbine performance map.

(M) = frap (N o BP,) (3-62)

where (M), = Inlet-corrected flow parameter normal-
ized to design point

N, = Inlet-corrected spool speed normalized
to design point

Ap, = Pressure ratio normalized to design
point

The inlet mass flow rate in the turbine is

. . Tin,d Npin
"o (M")"[md[Nde d)]{ Tin]

(3-63)

16

where p;,, = Stagnation pressure at turbine inlet

T,, = Stagnation temperature at turbine inlet

N = Spool speed

my = Design point turbine mass flow rate

Pin, 4 = Design point stagnation pressure at tur-
bine inlet

Tin, 4 = Design point stagnation temperature at
turbine inlet

N, = Design point spool speed

When the normalized inlet flow parameter at the
design point, (M,,)n, is returned from the map, the value
should be exactly 1.0. However, because the map values
are determined by an interpolation routine (see [3],
Appendix C), it may not be exactly 1.0. This error can be
eliminated by introducing a correction coefficient, W,
which when multiplied by the returned map value will
make the returned map value be exactly 1.0

1
w = R
corr ((Mp)) (3 64)

n" map@designpt

Placing the correction coefficient into Eq.(3-63) gives
the mass flow rate in the turbine

, . Tin,d Npin
m = (Mp) " [md(lvd-P—]](T) . WC()” (3-65)

ind n

The normalized enthalpy drop parameter, (k,),, is
obtained from the turbine performance map.

(hP)n = fmap (N »8p,) (3-66)
The enthalpy drop in the turbine, A#, is found by the
following equation,

Ah
d
Ah = (h) -NJT. | —4—
bon ml:Nd Tin d:|

(3-67)

where Ak, = Design enthalpy drop across turbine

When the normalized enthalpy drop parameter at the
design point (#,),, is returned from the map, the value
should be exactly 1.0. However, because the map values
are determined by an interpolation routine (see [3],
Appendix C), it may not be exactly 1.0. This error can be
eliminated by introducing a correction coefficient, H,,,,
which when multiplied by the returned map value will
- make the returned map value be exactly 1.0,

(3-68)
1

H =
corr ((h))

P’ n” map@designpt

Placing the correction coefficient into Eq.(3-67) gives

Ah
d
Ah = (hp) n’ Hep NrJ T [;—_}

d Tin, d.

(3-69)

The rate of energy being removed from the working
fluid by the turbine is

Eppp = [ty + (it bldpet) 1 Bk (3-70)

where E,, = Rate of energy being removed from
the working fluid
= Mass flow rate of the working fluid at
the turbine inlet
1 peeq = Mass flow rate of the cooling bleed-
flow
bldpct = Percentage of bleed flow which does
turbine work

M injer

E,. 15 the energy flux term for the turbine, and is
referred to as the turbine energy term. It is used to
compute the torque applied to the shaft by the turbine
and is utilized in the energy balance equation given in
the shaft mathematical model. Because the energy
removal process is assumed to take place in the
downstream mixing volume, E,,,;, is the rate of energy
being removed from the working fluid in the mixing
volume, and is given by the 8Q/dr term in the mixing
volume dynamic energy equation (the 3 0/d: term will be
negative). Thus, E,,,, will be used by the mixing volume
to account for the energy removed by the turbine from
the working fluid.

17

4.0 TESS Operating Paradigm

The sequence of computational steps used to
simulate the propulsion system is termed the
simulation’s operating paradigm. The TESS operating
paradigm was derived from the DIGTEM turbofan engine
simulation code [9], and consists of four steps:

1. Establish the engine system configuration. Since
the engine configuration in TESS is user-defined
it is not known until the simulation is started, and
can only be determined after the simulation has
begun. (Note: This step is implicit in the DIGTEM
code because that code uses a static engine
configuration.)

2. Correction coefficients are evaluated, based on
user defined design-point data, to balance the
engine at the design-point.

3. The steady-state (balanced) engine at the user-
defined initial operating point conditions is
determined.

4. The transient simulation is then begun from the
converged steady-state conditions just calculated.
Based on user-defined open-loop transient
control schedules in the compressor, combustor,
nozzle and environment components, the
transient is run through the user-defined time
range.

In this Section, the operating paradigm will be
discussed in detail in preparation for the discussion of
how it is implemented within the AVS system which is
covered in Section 5.

4.1 Applying the Governing Equations

The traditional approach to building a simulation
system is to reduce the problem to a set of coupled
differential equations

dx _

i fx@),n

subject to initial conditions
x(1=0) =g

where x is a vector containing the time dependent
state variables for the system. The system of equations
is then solved using numerical techniques.

This approach was the fundamental approach used in
TESS. As shown in Section 3, differential equations in
the duct, mixing volume and shaft components of the
propulsion system are used to represent the
conservative laws of energy and mass. Once an engine
system has been established by the user, the differential
equations for each of the duct, mixing volume and shaft
components are used to form the system of differential
equations for the system as described above. The
number of equations in the system is not fixed, but rather
is arbitrary and completely dependent on the number of

duct, mixing volume and shaft components within the
engine model which the user has constructed. The
system of differential equations describing the engine
system are then used to determine the steady state
conditions of the engine and to determine the engine
conditions at during a transient analysis.

At the steady-state engine condition, the conservative
laws are satisfied and there is no change in the state
values with respect to time (i.e., the derivative values, dx/
dt, are zero). Thus, for steady-state, the system of
equations being solved is

dx _ _
= =f(x(),n =0

In the transient analysis, x is a vector containing time-
dependent state variable. The differential equations are
evaluated to determine the values of the derivative
terms, dx/dt, which are then used to compute the state
variables, x, at the end of some discrete time step. This
process is repeated throughout the transient time
domain.

4.1.1 The Components Execution
Sequence

In order to determine the steady-state balanced
engine, or perform a transient analysis, the differential
equations used by the shaft, duct, and mixing volumes,
must be evaluated. These, however, cannot be evaluated
directly as they are dependent on data computed by
other components in the system. This input data needed
by the shaft, duct, and mixing volumes, must be
determined prior to applying the differential equations in
these components.

Due to the methods used to apply the equations
governing the operations of each of the engine
components, there is a specific sequence of execution
for the engine components. This sequence is comprised
of the following seven steps.

Step 1 - The stored mass' and temperature at the
physical component boundaries are set. As described in
Section 3, the boundaries between the physical
components are modeled by the intercomponent
volumes (mixing volumes). Also, the spool speed in the
shaft components, and the mass flow rate in the duct
components are set. These values are considered
“known” values, either as initial guesses, or as having
been solved for numerically.

Step 2 - The pressure at the boundaries between the

1

1. The user does not actually specify the stored mass as a design
point or initial operating point value. Instead, the temperature, pres-
sure and volume are specified in the mixing volume. These are used
in the ideal gas law to give the stored mass of the mixing volums.
Aside from the initial computation, in which the pressure has been
defined by the user, the stored mass, temperature, and volume are
used to determine the pressure (see step 2). Stored mass is used as
the independent variable instead of pressure because the continuity
equation is used to solve for the derivative of stored mass in the mix-
ing volume.

18

physical components (in the mixing volumes) are
computed. The values of temperature, stored mass
(defined in Step 1) and the user-defined value of volume
(a constant), are used with the ideal gas law to solve for
the pressure.

Step 3 - All physical engine components which are
associated with the flow of the working fluid through the
engine (bleed, combustor, compressor, nozzle, turbine)2
compute their mass flow rates. Mass flow rate in the
physical components is determined from either one-
dimensional flow equations (bleed, combustor, nozzle),
or from empirical data performance maps (compressor,
turbine). In each case, the values of temperature and
pressure at the component boundaries (and spool speed
in rotating components), which were defined in Step 1,
are used to determine the mass flow.

Step 4 - All components in the engine compute the
fuel-air ratio, f/a, of the flow in the component (obviously,
those components which do not deal with fluid flow, such
as the shaft component, will not compute a value for /a).
The f/a ratio of the working fluid is needed, along with the
temperature, to compute the enthalpy of the fluid. The
fuel-air ratio in a component is dependent on the f/a and
mass flow rate of the fluid entering the component at its
inlet boundary and on whether the component adds fuel
to the fluid flow (e.g., a combustor component).

The fact that the fuel-air ratio of a component is
dependent on properties of the flow entering at its inlet is
significant because it requires that before a component
can compute its f/a value, those component(s) which
pass fluid into the component must already have
computed their values of mass flow rate and f/a. This is
illustrated in Figure 4.1. Consider engine components
C1, C2, and C3. C1 and C2 are components which pass
the working fluid into C3. Components C1 and C2 must
have already determined their f/a and mass flow rate
values prior to C3 attempting to compute its f/a value as
C3 needs that information to compute its own fuel-air
ratio. This requires that when computing the f/a in each
of the components in the system, the components must
determine their f/a in a sequential order following the
direction of the fluid flow through the engine.

Step 5 - All flow components compute the enthalpy of
the working fluid. Enthalpy is determined from curve-fit
data based on values of temperature and f{/a.
Temperature was defined in Step 1 and f/a defined in
Step 4.

Step 6 - Compute energy terms in some components.
Compressor, combustor, and turbine each compute
energy terms (see Section 3). To compute the
compressor energy terms, the f/a and enthalpy of the
fluid entering the compressor and the temperature at the

2. Although the duct component is considered a physical engine
component, it is omitted from this list because it does not compute
its mass flow rate. Mass flow rate is the independent (state) variable
in the differential equation for the duct, and as such is determined
numerically by the equation solver

compressor exit, must be known. These were computed
in Steps 1, 4, and 5, respectively. The combustor energy
term is dependent only on the fuel mass flow rate, which
is a user-defined value and is always known. The turbine
energy term is dependent on the mass flow rates of the
flow into the turbine and the bleed component flow which
is used to cool the turbine blades. This requires that the
bleed mass flow rate used to cool the turbine be
determined prior to computing the turbine energy term.
Step 7 - All information necessary to evaluate the
differential equations has been computed in the
preceding Steps. The shaft, duct and mixing volume
components can now compute the derivatives of spool
speed, mass flow rate, temperature and stored mass.

C1 Cc2

A— m, f/a

y

C3

Figure 4.1 - Passing the Values of Fuel-air Ratio and
Mass Flow Rate

4.1.2 “Running the Engine”

When performing an engine transient or attempting to
balance the engine at the initial operating point, the
differential equations used to describe the dynamics of
the engine must be computed. As stated above, in order
to correctly compute the fuel-air ratio, the engine
components must execute in sequential order in the
direction of working fluid flow through the engine.

Furthermore, using this sequential execution, it is
possible to combine several of the operational steps
described above. If the sequence is followed, it is
possible to combine Steps 3, 4, 5, and 6 into a single
computational step. If each component executes,
computing its mass flow rate, f/a, enthalpy and energy
terms, in a sequential order following the direction of the
fluid fiow through the engine, the information will be
correct. This is illustrated in Figure 4.2. Consider engine
components C4, C5, and C6. C4 and C5 are
components which pass the working fluid into C6.
Components C4 and C5 have already determined their
mass flow rate, t/a, enthalpy and energy values prior to
C6 attempting to compute its mass flow rate, fa,
enthalpy and energy value. Thus, when C6 executes, it
will have the data necessary to carry out its
computations correctly.

19

C1 C2

A—r'n, f/a, energy

C3

Figure 4.2 - Combined Computational Steps 3, 4, 5, and
6

The seven steps described above can be reduced to
three sequential execution of components which is
termed a pass through the engine.

Pass 1 - Based on known values of temperature and
stored mass in each of the mixing volumes in the engine,
the pressure in the mixing volume is computed (see
Section 3, Intercomponent volumes). This step provides
the temperature and pressure at the boundaries of the
physical engine components.

Pass 2 - All engine components compute the f/a and
enthalpy of the working fluid within the component. This
must be done in the direction of fluid flow propagation in
the engine, as the f/a ratio of a component is dependent
on the flow into the component from the upstream
module(s). Thus, the execution will follow the flow path
lines from the first component to the last. Since
mechanical components (shafts) don't deal with flow,
they do not execute at this time.

Physical components, in addition to computing f/a and
enthalpy of the working fluid, compute their mass flow
rate excluding ducts for which the mass flow rate is a
known value. Turbine and compressor components use
steady-state performance maps to compute mass flow
rate, using the known value of shaft speed, and the
pressure and temperature at the physical component's
boundaries provided by the mixing volumes as described
in Pass 1. Other components use one-dimensional,
isentropic relationships to determine the mass flow rate
also based on the pressure and temperature at the
physical component’s boundaries.

Some physical components (compressor, turbine,
combustor) compute energy terms at this time. These
terms are used by other engine components to compute
the differential equations (see Section 3} which are used
to define the system.

Pass 3 - The mixing volume, shaft and duct
components generate their respective derivative values.
The order of execution is not specific in this step as the
needed information has already been computed in the
previous steps.

Mixing volumes compute the derivatives of the state
values of stored mass and temperature by applying the
conservation of mass and energy equations to the flow in

the mixing volume component. The values of mass flow
rate, enthalpy and energy source terms from each of the
upstream physical components and the mass flow rate
out of the mixing volume, which is the sum of the mass
flow rates in the physical components at the mixing
volume’s exit boundary, are used to compute the
derivative values. The shaft components compute the
derivatives of the state value of spool speed after
obtaining the energy terms (computed in Pass 2) from
the compressor and turbine components which are
attached at the shaft components interfaces. The duct
components compute the derivative of the state value of
mass flow rate based on the pressure and temperature
at the component boundaries. These values are
provided by the mixing volumes at the boundaries.

These three passes through the engine are
collectively known as running the engine, as now all of
the components have computed all necessary
information about the state of the engine.

4.2 Computing Correction Coefficients

The second step in the TESS Operation Paradigm is
the determination of the Correction Coefficients. It is
assumed that the design values for each component in
the system are available, and furthermore, that those
values result in a balanced system. If for some reason
(either because of poor input data or numerical
inaccuracies in the computation), the design point data
does not result in a balanced engine, correction
coefficients are computed which cause the engine to be
balanced at the steady-state design point. These values
are then used in the governing equations for both on-
design and off-design point operation.

The process of determining the correction coefficients
is similar to running the engine, with the following
exceptions:

« The design point values of temperature and pres-
sure in the mixing volumes are already known, hav-
ing been defined by the user. Thus, it is not
necessary to do the operations stated in Pass 1.

« It is not necessary to evaluate the differential equa-
tions in Pass 3, as the derivative values are not
needed to compute the correction coefficients.

Thus, only the computations carried out in Pass 2 are
required. Once the necessary values are computed, they
are compared with the user-defined design point values
to determine the correction coefficients.

4.3 Determining Steady-State Engine
Balance

Before proceeding to the transient analysis, TESS first
determines the steady-state, balanced engine conditions
at the initial operating point. As described above, the
system is considered to be balanced at steady-state
when the state variables for the system {contained in the
x vector) are no longer changing with time:

20

dx _ _
5 —Sx0.0) =0

The state variable values at the initial operating point
are input data which is supplied by the user. These are
the initial operating point values of temperature and
pressure in the mixing volumes, spool speed in the
shafts and mass flow rate in the physical components.
The state variable values defined by the user are then
used to run the engine and determine the derivative
values. If all of the derivatives are within a user-defined
tolerance value of zero, the system is considered to be
balanced at the initial operating point. If, however, the
derivatives are not near enough to zero, a numerical
balancing routine is applied to determine the state values
for the system which force the derivatives to zero. TESS
currently utilizes two numerical techniques to achieve
steady-state balance of the engine: the Newton-
Raphson method and a Fourth-order Runge-Kutta
method. These methods and their implementation in
TESS are described in Appendix B of [4].

4.4 Transient Engine Analysis

Once the engine has been balanced at the initial
operating point, the transient analysis may begin. As
described above, the system of differential equations

dx _
2 =00

are evaluated to determine the derivative values, dx/dt,
which are then used to compute the state variables, x, at
the end of some discrete time step. In the transient, the
engine is run, in time, away from its initial operating point
by using open-loop engine controls (e.g, combustor fuel
flow rate). These controls, which are defined by the user
using transient control schedules (see Figure 4.3),
provide linear, parametric control of certain engine
variables. (See Appendix D of [4] for more information).
The simulation is continued until the user-defined
transient end time is reached.

TESS currently includes four numerical methods for
solving the system of equations during the transient:
Improved Euler, Fourth-order Runge-Kutta, Adams, and
Gears method. The latter two are part of a ordinary
differential equation solver package developed by
Livermore Laboratories (see Appendix B of [4] for more
information).

Parameter

Value
Initial
Operating [
Point
-
Time

Figure 4.3 - Graphical representation of Transient
Control Schedule

21

5.0 Implementation of Operating
Paradigm Within AVS Framework

In this Section, the methods of implementing the
propulsion system analysis code operating paradigm
(described in Section 4) within the graphical user
interface provided by AVS is discussed. Two possible
techniques to implement the AVS system as the
Graphical User Interface (GUI) for the engine code were
considered.

In the first case, AVS would be used only as a
graphical pre/post processor to the propulsion system
analysis code. The propulsion system analysis code
would exist as a separate code hidden from the user
beneath the GUI. The user would use the AVS graphical
interface to define the engine system and input data for
the components in the model. That data would then be
sent to the propulsion system analysis code, and the
simulation would be executed. Any output from the code
would be made available to the AVS system to provide
the user with a graphical representation of the output
data.

This approach is a traditional method used to make
batch engine codes easier to operate. However, to
provide for arbitrary engine configurations, the engine
analysis code must be capable of handling multiple
instantiations of component objects and encapsulating
the data for each object. This can be handled in a
number of different ways. The most efficient is to use of
an object-oriented programming language which by its
very nature provides the capability for creating multiple
instances of an object which encapsulate their data.
Another method is to put each instance of an object in a
separate UNIX process. A third, less elegant and more
complex method, as far as programming, is a code
translator. In this method, a program uses the input data
and engine configuration provided by the GUI to write a
code which reflects that engine system model. Objects
are instanced by creating copies of their programming
code in different subroutines (see reference 12) into a
file. The file is then compiled into an executable file
which may later be executed.

In the second technique for implementing the AVS
system as the GUI for the propulsion system analysis
code, the engine analysis code is integrated with the
AVS system. The propulsion system analysis code and
the GUI provided by AVS are coupled so that the
operation of each of the codes interacts with the other.
The engine analysis code for each component object is
placed within an AVS module along with the code
necessary to allow it to function within AVS. The user
utilizes the AVS graphical interface to define the engine
system and input data for the components in the model.
Data input from the user to the engine code and data
output from the engine code to the user is fully integrated
with the graphical tools provided by AVS.

Because the AVS system creates instances of objects
which run within separate processes, it provides, by
design, the capability of creating multiple instances of an
object which encapsulate their data. There is no need to

use an object-oriented language - the relatively more
common non-object-oriented languages of FORTRAN
and C may be used; and, there is no need to employ a
cade translator. For this reason, the second technique,
utilizing full integration of the propulsion system code
within AVS, was used in developing TESS.

However, because the engine code is fully integrated
within AVS, which does not provide complete control
over all aspects of its operation, this creates difficulties in
implementing the operating paradigm of the propuision
system analysis code. This includes difficulties in the
areas of:

» Scheduling module execution

» Passing messages to modules

» Determining how the system is connected
« Integrating data among several modules

The solutions to these problems are discussed in this
Section.

5.1 System Execution Control

One of the more difficult aspects of integrating the
propulsion system analysis code within the framework of
the AVS system was the inability to explicitly control
execution of the AVS modules within the engine network
according to the operating paradigm. As described in
Section 2, AVS was developed primarily to take data,
manipulate them and render them visually to the screen.
in most image processing applications, the data are
created and then manipulated in a sequential order to
generate output data which is displayed. This type of
process generally requires that data flow from top to
bottom (see Figure 5.1). Once the first module (i.e. the
one at the top of the Workspace) in the network has
executed, each downstream module will execute
successively as it receives new input data from the
upstream module.

read data N
manipulate u

Direction of
data flow

display data |

Figure 5.1 - Flow of Data in an AVS Visualization
Application

However, if an application requires that certain

modules execute prior to other modules and they are not
connected in sequence, a problem exists. This is a

22

feature inherent in modeling turbine systems. Consider
the core section of a gas-turbine propulsion system as
shown in Figure 5.2.

compressor

Figure 5.2 - Representation of Turbine Propulsion
System Core Section

in the mathematical model representing compressor-
shaft-turbine assembly, which is known as the spool, the
differential form of the energy conservation balance for
the spool is (Eq. 3-61):

dN _ (30\41
E. = (;) 7N[2Ecomp + (E(:urr' ZErurh)]

To evaluate this equation requires that the
compressor energy term (E,,,,,) and the turbine energy
term (E,,,,) be known. These values can only be known if
the compressor module and turbine module both
execute prior to the shaft module. However, in the AVS
system shown in Figure 5.2, the modules will execute in
the following sequence: compressor first, then the
combustor!, shaft and finally the turbine. Clearly, when
the shaft component computed the derivative value of
the spool speed (dN/dt), the result would be erroneous,
as the turbine energy term would not yet be computed.

For developing a propulsion system simulator in which
the engine configuration being modeled is static, it is not
difficult to write a simulation program so that engine

1. The order of exscution for the shaft and combustor modules is as
follows: Once the compressor has finished executing, the combustor
and shaft would receive new input data from the compressor. The
AVS Flow Executive would then schedule them both to execute. The
order of execution is dependent on the position of the modules in the
Workspace. As stated above, module execution is from the top-
down in sequence along the data connecting line(s). For modules
which have a common upstream module, the module which is
nearer the top of the Workspace will generally execute first. In this
case, it would be the combustor. It may also be noticed that if the
shaft finished operating prior to the combustor, the turbine could
possibly begin operating as its input (from the shaft) would have
been changed. Thus, the turbine would execute without the data
from the combustor an produce erroneous results. This possibility is
discussed in section 5.2.1

computations occur in the correct order. For the above
example, it would be very easy to, say, call the
compressor and turbine subroutines to compute their
respective energy terms before calling the shaft
subroutine to compute the speed derivative.

For a propulsion system simulator in which the engine
configuration is not known until the simulation begins
executing, the solution is not quite as simple. For the
simulation to execute properly, it is necessary that some
controller exist which can direct the simulation by
executing the correct code at the appropriate time.
Furthermore, in a simulation where the components in
the engine are treated as generic objects, there will
possibly exist multiple instances of an engine
component. Each instance of an object will have the
same code and operate identically, but will have different
data associated with it.

A relatively simple solution to the problems
encountered in a dynamic system simulation with
multiple instances is to use an object-oriented
programming (OOP) language. This would allow muiltiple
instances of common pieces of code (objects) and
provides the ability to schedule the execution of code
correctly. One of the reasons for using AVS was that it
allowed having multiple copies of pieces of code (much
like multiple instances of objects in an OOP code)
without using an object oriented code. Unlike an OOP
language, however, with AVS there is no convenient
method to pass messages to a specific module and
direct it to perform the required operation. For example,
in an OOP language, the system controller could send a
message to the instance of the compressor object called
LPC, telling it to compute the mass flow rate and return
that value simply by executing a message such as LPC
getmassflow. Using AVS it is not possible to send such a
simple message directly.

In lieu of being able to pass messages directly to
modules within AVS, a different approach was applied to
the problem. Instead of a calling routine directing an
object to perform a certain function, each of the engine
component modules are designed to perform certain
computational operations when directed by a system
controller module (SYSTEM). The difference being that
the SYSTEM module will send a message to perform
some function to the entire network of modules. Those
modules which are programmed to respond to the
message sent by the SYSTEM module will do so, and
those which are not designed to respond to the message
will simply ignore the message. In this way, the modules
themselves have some built in intelligence about when to
execute, and the system controller simply sends the
correct messages in the order as determined by the
operating paradigm described in Section 4.

The advantage of this scheme is that it utilizes the
way in which AVS was designed to operate. If the
message from the SYSTEM module is sent along the
connecting wires connecting each module, then all
modules in the network will receive the message.
Utilizing a coroutine module as the system controller

23

module provides the ability to send a message to the
network and then wait until all of the modules in the
network have responded to that message.?

5.1.1 TESS Message Passing Under
AVS

The problem of sending messages to the various
objects in the system in the correct sequence was solved
by creating a system controller object which passed
integer values to all of the modules in the system.
However, there still existed a problem of sending the
actual messages. It was decided to use integer values to
represent the message being sent to the engine
network.® The integer values do not represent a single
message, but rather are used to trigger a set of
computations in certain engine components. The system
controller module (SYSTEM) sends an integer value
(which is contained in the NSYS variable) to each
module in the network, to control the sequence of
operations in the simulation. Different NSYS values are
sent depending on what function is need to be
performed. Each type of module (compressor, turbine,
duct, etc.) responds to the different NSYS values
according to its specific programming. In this way it is
possible to control which modules execute, in what order
they execute, and what function they perform.

This method, while not object-oriented, retains the
object-oriented concept of encapsulation. The module
still remains a “black-box” which responds to messages
sent to it and returns the desired values. The difference
now is that instead of text-base messages, the
messages are in the form of integer numbers.

5.2 Operating Paradigm
Implementation Under AVS

The operating paradigm used by TESS was described
in Section 4. The following sections describe how the
various engine operations are controlled through the
passing of the various messages (NSYS values) to the
engine network. Table 5.1 lists the NSYS values used to
control engine operation in the TESS modules and a
short description of the corresponding engine operation.

5.2.1 Engine System Connectivity
(NSYS values 0, 1, and 9)

One of the more difficult aspects of utilizing AVS to
control the graphical construction of an engine model

2. A module executes even if the message the SYSTEM module has
sent is one which the module does not respond to. This is necessary
to ensure that the data being sent along the connecting wires is
available to the next module in the system. If the module did not exe-
cute, the downstream modules would have no input data and the
simulation would be disrupted.

3. Text strings could have been used as the message format. In an
earlier development phase of TESS, only integers were being
passed between modules, so integers were used as the message
format.

S’Izi:ess Engine Operation
0 Establish Data Struct Pointers
1 List All Engine Components
2 Define Design Pt Data to the System
3 Compute Correction Coefficients (except
shaft)
4 Compute Shaft Correction Coefficients
5 Third part of Pass through the Engine
6 Second part of Pass through the Engine
7 First part of Pass through the Engine
8 Define Operating Pt Data to the System
9 Determine Upstream Components
10 Define Operating Pt Data to the System

Table 5.1 - NSYS Values and Engine Operations

was how to determine the connectivity between engine
component modules (i.e. how the engine component
modules are connected to one another). This information
was needed because engine components must be able
to access information computed by other engine
components. For example, in order for the shaft module
to apply an energy balance, it must determine the energy
terms from the compressor and turbine which are
attached to the shaft. This requires that the shaft “know”
to which compressor and turbine component it is
connected

An obvious method to determine the connectivity of
the engine model would be to have the user use the
mouse pointer on the display screen to “draw” lines
between the modules, (see Figure 5.3). These lines
would indicate either physical connections (such as
between a shaft and a compressor), or paths of fluid flow
(such as between a compressor and combustor)
between engine components. Once drawn, the lines
would establish which module is connected to which
other module and the system would be defined.

Compressor Combustor Turbine

Shaft

Figure 5.3 - Connecting Lines Between Components

in most graphical user interfaces, the process of
drawing the lines would involve having the user use a

24

mouse pointer to select modules to be connected. The
location of the modules selected by the mouse pointer on
the screen would be determined by the windowing
system. This information could then be compared to the
known location of each of the engine component objects
on the screen, to determine which of the objects the user
had selected. In this way, the selected module and the
modules it was connected to could be established and a
connecting line could be drawn.

In AVS, the above process is also used: modules on
the screen are connected by selecting a module with the
mouse pointer and “dragging” the pointer to the module
to be connected. This causes a line to be drawn between
the modules to show that they are connected.
Unfortunately, the information used to draw the line is not
accessible by the user or the programmer, as it is hidden
within the AVS software. Thus, it is not possible to
determine which modules have been selected and how
they are connected®. Another approach, which takes
advantage of AVS’s operational characteristics, was
used instead to determine the system connectivity. The
connectivity of a engine model can be defined by three
sets of information: 1) a list of each of the components in
the simulation, 2) for each component in the system, a
list of the components which are connected to its input
ports (i.e., it's upstream components), and 3) for each
component in the system, a list of the components which
are connected to its output ports (i.e., it's downstream
components). The process of obtaining this information
involves directing each component to perform specific
actions by sending each component a series of NSYS
values as described below.

NSYS value of 0 - Once an engine model has been
configured (see Figure 5.4 for an example network), and
the user begins the simulation, the SYSTEM module
immediately begins running and sends an NSYS value of
0 to the network. This is necessary to allow the data
passing mechanism to initialize itself. Within each
module, AVS utilizes integer pointers to return the
address of the data struct within memory for each of the
input and output ports on the module. Without this, it is
possible that some modules would return null pointers
which would cause errors in the initialization process.
The NSYS value of 0 is used since this value triggers no
action in any of the modules.

NSYS value of 1 - Upon completion of execution of
each module in the network, the SYSTEM module then
opens the file comp.list.no. This file, when completed, will
contain a list of all the components in the network
(except the SYSTEM-END module). The SYSTEM
module is always the first module to list itself in
comp.list.no and lists the following: its component number
(always 1), component name (system), component type
(syst), component code (00), and solver flag (0). These
terms are described below:

4. It is now possible to determine the connectivity of the modules
using the AVS Command Language Interface using the net_show
command. At the time TESS was developed, this option was not
available and thus was not implemented.

¢ The component number is a unique number which
identifies each of the components connected in the
network.

» The component name is a unique, user-defined,
character label (10 characters maximum). It is used
to distinguish multiple instances of a module (e.g. to
distinguish between the high and low pressure tur-
bines, they could be given the name HPT and LPT,
respectively).

¢ The component type is a four character label used to
identify a module’s type.

* The component code is a 4 digit integer value also
used to identify a module’s type.

* The solver flag defines whether the component gen-
erates derivative terms. Zero (0) is false, one (1) is
true. Mixing volume, shaft, and duct modules gener-
ate derivative terms so their solver flag value is 1; all
other modules are zero. (See Figure 5.5).

After SYSTEM has completed writing to comp.list.no, it
sends an NSYS value of 1 to the network. Each module
in the network then responds with the following action:

1. It reads the file comp.list.no to determine the number
of components already listed in the file.

2. Upon reaching the end of the file, the component
determines its component number and appends its
component number, name, type, and code to the
comp.list.no file.

Figure 5.4 - Example Propulsion System Network

25

For example, if the DUCT component shown in the
example network of Figure 54, was executing in COMP. COMP. COMP. | COMP. FLAG
response to an NSYS value of 1, it would read the NO. NAME TYPE CODE
C(?mp.]ist.no file to determine its component‘ number. 1 system syst 0 0
Figure 5.6 shows what comp.list.no would look like at that -
time. DUCT would determine that ten of the components 2 environ | envr 1 0
in the network had already executed and listed 3 hpc comp 22 0
themselves in comp.list.no, therefore the I?UQT 4 hss shft 55 1
component number would be 11. It would then write it's
component number (11), name (duct), type (duct), 5 mv_3 mxvl 33 1
component code (77) and solver code flag (1) in the file. 6 hp_bleed | bid 88 0

7 burner comb 44 0
MODULE TYPE CODE FLAG 8 mv_4 vl 33 1
System syst 0 0 9 hpt turb 66 0
Environment envr 11 0 10 mv_5 mxvl 33 1
Compressor comp 22 0]
Mixing Volume mxvl 33 1 Figure 5.6 - Contents Of comp.list.no file As Read By
DUCT Component
Combustor comb 44 0]
Shatt shit 55 ! COMP. | COMP. [COMP. | COMP. | ..
Turbine turb 66 0 NO. NAME TYPE CODE
Duct duct 77 1 1 system syst 0 0
Bleed bled 88 0 2 environ | envr " 0
Nozzle nozz 101 0 3 hpc comp 29 0
Figure 5.5 - TESS Module Types and Codes 4 hss shft 55 !
5 mv_3 mxvl 33 1
3. The component sets the value of its component 6 hp_bleed | bid 88 0
number to the variable NCOMP which is a static 7 b : comb 24 0
variable and will be retained by the module after it urne
has completed executing. 8 mv_4 mxvl 33 1

4. The component sends the NSYS value of 1 to the 9 hpt turb 66 0

downstream component.

After the network has completed executing, the 10 mv_S mxvi 33 !
comp.list.no file contains a description of each module in 11 duct duct 77 1
the network as shown in Figure 5.7. 12 mv_6 mxvl 33 1

NSYS value of 9 - Next, the SYSTEM module opens
the file comp.list.up and writes a header to the file. This 13 nozzle nozz 101 0

file, when completed, will contain a list of the upstream
component(s) connected to each of the components in
the network (except the SYSTEM-END module). The
SYSTEM component then sets the NAUXVAL variable
equal to its component number (which is always 1).
SYSTEM then sends an NSYS value of 9 to the network
to which each module in the network responds with the
following action:

1. It receives input data from the upstream module(s)
and extracts the component number of the
upstream component from the NAUXVAL variable.
The component number, name, type, and upstream
component number are appended to the
comp listup file. lf the component has multiple
inputs, input is checked for each of its upstream
components and they are also appended to the
comp.list.up file.

Figure 5.7 - Contents of comp.list.no File After
Completion

For example, if the DUCT component shown in the
example network, was executing in response to an
NSYS value of 9, it would extract the component number
of the upstream component (which in this case is 10 - the
component number of the MV_6 component). It would
then write it's component number (11), name (duct), type
(duct), and the upstream component number (10) in the
file. Figure 5.8 shows what the comp.list.up file would
look like after this was completed.

2. The component sets the value of its upstream com-

ponent number to the variable NCOMPUP which is
a static variable and will be retained by the module
after it has completed executing. If the component

26

has multiple inputs the values of the upstream com-
ponent numbers are stored in the NCOMPUP array
which is a static array and will be retained by the
module after it has completed executing.

3. The component sets the NAUXVAL value to its
component number and sends it to the downstream
component(s). Once the comp.listno and
comp.list.up files have been established, the SYS-
TEM module opens the file comp.list.dn and writes a
header to the file. For each component listed in
comp.list.no, the comp.list.up file is searched for any
components having the same upstream component
number.® These are then appended to the
comp.list.dn file. This file, then contains a list of the
downstream component(s) connected to each of
the components in the network (except the SYS-
TEM-END module). Figure 5.9 shows the com-
pleted comp.list.dn file for the example network.

The connectivity of the engine network is now defined.
By using these three files, the upstream and downstream
components of any component in the network may be
determined.

writes its design point values to the data arrays
corresponding to the component, which are then passed
to the downstream components. This is necessary
because other components must be able to access the
design point values of adjacent components. For
example, a compressor component must have the
design values of pressure at its boundaries in order to
compute its temperature correction coefficient (TCORR).
This information is provided by the mixing volume
components connected both upstream and downstream
of the compressor.

5.2.3 Computing Correction
Coefficients (NSYS values 3 and 4)

The SYSTEM module then sends a NSYS value of 3
to the network. All components except the shaft
components now compute their correction coefficients.®
As described above, the shaft component requires input
data from the compressor and turbine, and because the
modules in the network will operate sequentially, the
shaft would normally operate before the turbine. Thus,
the shaft must be made to wait until the turbine has
executed and therefore, does not respond to a NSYS

COMP. | COMP. | COMP. | UPSTREAM value of 3.
NO. NAME TYPE COMP. COMP.| COMP. |DWNSTRM| DWNSTRM | DWNSTRM